
Demonstrating DVS: Dynamic Virtual-Real
Simulation Platform for Mobile Robotic Tasks

Zijie Zheng, Zeshun Li*, Yunpeng Wang*, Qinghongbing Xie2, Long Zeng†

Abstract—With the development of Embodied AI, robotic
research has increasingly focused on complex tasks. Existing
simulation platforms, however, are often limited to idealized
environments, simple task scenarios and lack data interoperabil-
ity. This restricts task decomposition and multi-task learning.
Additionally, current Simulation Platforms face challenges in
dynamic pedestrian modeling, scene editability, and synchroniza-
tion between virtual and real assets. These limitations hinder
real-world robot deployment and feedback. To address these
challenges, we propose DVS (Dynamic Virtual-Real Simulation
Platform), a platform for dynamic virtual-real synchronization
in mobile robotic tasks. DVS integrates a random pedestrian
behavior modeling plugin and large-scale, customizable indoor
scenes for generating annotated training datasets. It features a
optical motion capture system, synchronizing object poses and
coordinates between virtual and real worlds to support dynamic
task benchmarking. Experimental validation shows that DVS
supports tasks such as pedestrian trajectory prediction, robot
path planning, and robotic arm grasping, with potential for
both simulation and real-world deployment. In this way, DVS
represents more than just a versatile robotic platform; it paves
the way for research in human intervention in robot execution
tasks and real-time feedback algorithms in virtual-real fusion
environments.

I. INTENDED DEMONSTRATION

During the conference, attendees will have the opportunity
to experience the DVS platform firsthand through a live,
interactive demonstration. The session will begin with a com-
prehensive walkthrough of the platform’s key features, includ-
ing pedestrian behavior simulation, large-scale customizable
environments, and real-time optical motion capture. Attendees
can interact with the system using multi-device support (PC
and VR), utilizing tools such as a mouse, keyboard, or VR
controllers to explore the platform’s capabilities.

Participants will be able to modify dynamic pedestrian
parameters, build custom environments, and collect experi-
mental data in various formats. Additionally, the demonstration
will showcase the real-time synchronization between physical
robots and their virtual counterparts, highlighting the plat-
form’s ability to bridge virtual and physical environments
seamlessly. This hands-on experience will provide a deep
understanding of how the platform supports dynamic human-
robot interaction and navigation tasks.

II. INTRODUCTION

Robots are becoming increasingly capable with advances
in perception, decision-making, and execution technologies.
These improvements have expanded their potential applica-
tions in industrial manufacturing[20][2], smart homes[21][6],

and other fields[41][4][9]. The transition from rule-based
operations to end-to-end learning has enabled robots to tackle
more complex tasks. However, achieving high efficiency in
real-world scenarios requires a complete workflow: virtual
data collection, training, and real-world deployment. Existing
simulation platforms often fail to effectively support this
closed-loop research due to their functional limitations.

Data collection in robotics typically relies on two ap-
proaches: collecting real-world data with physical robots or us-
ing virtual agents in simulated environments. Systems like Mo-
bile Aloha aim to reduce the cost of real-world data collection.
However, they still require significant hardware investment
and expert labor. Simulators provide task-specific modeling
tools for focused research. In contrast, simulation platforms
offer a broader framework for multi-task and complex scenario
investigations, enabling faster iteration. Platforms such as
Habitat[31][34][29], iGibson[16][32][39], and Arena[12][11]
have facilitated data collection and algorithm training. Yet,
their scope remains narrow. Habitat, while extended to support
HITL (Human-in-the-Loop)[38][24] and HRC (Human-Robot
Collaboration)[1][22], focuses mainly on navigation tasks.
iGibson enhances data richness and realism through interactive
environments but lacks support for dynamic scenarios. Arena
specializes in navigation, while tasks like grasping rely on
external simulators such as PyBullet[5] or MuJoCo[35].

Existing simulation platforms are often task-specific or
designed for static environments. They struggle with complex
long-horizon tasks that require environmental understanding
and cross-domain collaboration. For instance, completing a
task like retrieving a bottle from the fridge and placing it
on a desk involves navigation, manipulation, and environment
interaction. Current methods decompose such tasks into sub-
tasks across multiple simulators, increasing workload and
reducing coherence. Furthermore, most platforms lack models
for dynamic scenarios, such as pedestrian behaviors. They also
fail to integrate real-world feedback, exacerbating the sim-to-
real gap and resulting in significant performance drops during
deployment.

We propose DVS (Dynamic Virtual-Real Simulation Plat-
form), a novel framework designed for multi-task, dynamic,
and closed-loop robotic research. DVS addresses these lim-
itations through three key features. First, it supports com-
plex long-horizon tasks with dynamic pedestrian modeling
and flexible indoor scene editing. This enables high-fidelity
simulation environments for multi-stage operations. Second,
it establishes a virtual-real fusion workflow, combining high-



D
a
ta

cu
st

o
m

 d
a

ta
  
  

  
 

VR Interaction

P
er

ce
p

ti
o

n

RGB Depth Segmentation

D
y

n
a

m
ic

 d
a

t

Trajectory

Moving Pedestrians Mobile Robot AgentsD
y

n
a

m
ic

 P
lu

g
-i

n

Art Gallery Restaurant GYM Villa

S
ta

ti
c 

sc
en

e
…

Exhibition Gallery Supermarket

D
y

n
a

m
ic

  
sc

en
e

…

S
ce

n
e

A
p

p
li

ca
ti

o
n

Navigation

Trajectory Prediction Robot Relocalization

Pick and Place

Motion capture Agents

Grasping

Asssets

Fig. 1. Overview of DVS platform, which offers a variety of large-scale indoor scene types and dynamic element plugins on the left, enabling users to
construct dynamic environments. In the middle, the platform supports various data types that can be generated, such as RGB, depth, and semantic labels.
On the right, the data created using this platform can be applied to train robots for tasks such as navigation, trajectory prediction, and grasping. Through a
virtual-real fusion feedback mechanism, the platform allows bidirectional mapping of the states of real and virtual agents, enriching the research scenarios.

accuracy optical motion capture and ROS-based communica-
tion. This ensures synchronized validation between virtual and
physical robots, facilitating optimization based on simulated
feedback. Third, it introduces an intervention-based process.
Researchers can adjust virtual scenarios in real-time during
physical execution, enhancing task flexibility and robustness,
and extending HRC research capabilities.

Key contributions of this work are as follows:
• We present a virtual-real fusion simulation platform

(DVS) for robotic research, which enables closed-loop
sim-to-real transfer validation through virtual-physical
synchronization and ROS-based communication. It sup-
ports a wide range of tasks.

• We provide dynamic environmental modeling, including
pedestrian behavior simulation and flexible scene edit-
ing. These capabilities enhance complex task execution
through diverse and high-quality data generation.

• We introduce an intervention-enabled workflow. This
supports real-time scenario adjustments during physical
deployment. The virtual-real synchronization mechanism
improves adaptability in dynamic environments, demon-
strated through manipulation tasks.

III. RELATED WORK

Simulation platforms have become integral to the devel-
opment and validation of embodied AI algorithms, enabling
researchers to train and test robotic systems in controlled
environments before deployment in real-world tasks. These
platforms have seen significant advancements over the past
decade, particularly in the areas of physical modeling, scene
realism, and task-specific benchmarks.

The rise of embodied intelligence has driven remarkable
progress in robotics and artificial intelligence, particularly

for tasks that require agents to interact with and navigate
real-world environments. Such tasks—ranging from obsta-
cle avoidance and path planning to human-robot collabora-
tion—demand rigorous testing and training frameworks. In
this context, simulation environments have emerged as indis-
pensable tools, offering safe, scalable, and cost-effective plat-
forms for developing and validating embodied AI algorithms.
These environments not only enable exploration of high-
risk scenarios and faster algorithm iteration but also address
the critical challenge of sim-to-real (sim2real) generalization,
where models trained in simulation must effectively transfer
to real-world robotic systems.

Over the past decade, the development of simulation plat-
forms has been instrumental in advancing embodied intel-
ligence. Platforms such as Gazebo[14], MuJoCo[35], and
NVIDIA Isaac Sim[23] have excelled in robotics control and
high-precision physical simulation, enabling accurate model-
ing of robot dynamics and multi-robot systems. Meanwhile,
tools like Habitat[29], AI2-THOR[15], and iGibson[16] have
prioritized photorealistic environments for navigation and task
planning, supporting benchmarks for tasks like object re-
arrangement, manipulation, and visual question answering.
Recent systems such as DialFRED[8] and TEACh[25] have
expanded the scope of these benchmarks by integrating natural
language dialogue, encouraging richer agent-environment in-
teractions. Despite these advancements, several persistent chal-
lenges remain unresolved, hindering the broader applicability
of these platforms to dynamic, real-world scenarios.

One key limitation lies in the inability to model dynamic,
stochastic scenes that reflect realistic human behaviors and en-
vironmental changes. Platforms like Habitat and AI2-THOR,
while robust for static or semi-static environments, rely heavily
on pre-defined tracks and scripted object interactions, which



TABLE I
COMPARISON OF SIMULATION PLATFORMS. FOR THE SENSOR, S REFERS TO SEMANTIC, L REFERS TO LIDAR

Simulation Platform Sensors
Dynamic Scenes

VR Interaction ROS
Pedestrians Objects

Arena[12] RGB-D, L � × × �
AI2THOR[15] RGB-D, S × × × ×
Gibson series[16][32] RGB-D, S, L × × � �
HoME[3] RGB-D, S × × × ×
Habitat[31][34][29] RGB-D, S × × � ×
SAPIEN[40] RGB-D, S × × � ×
ThreeDWorld[7] RGB-D, S × × � ×
VirtualHome[27] RGB-D, S × × × ×
DVS(Ours) RGB-D, S, L ✓ ✓ ✓ ✓

constrain their generalizability to real-world, unpredictable
conditions. Another challenge is the gap in sim2real gener-
alization. While simulators like iGibson and MuJoCo excel
in physical modeling, they often lack the diversity and ran-
domness required to robustly train algorithms for real-world
deployment. Moreover, the growing emphasis on human-
robot collaboration (HRC)[1] has exposed the limitations of
existing platforms, which rarely support real-time interac-
tions such as gesture-based commands, shared workspaces,
or natural language dialogue. Systems like HumanTHOR[37]
and SEAN[36] have made strides in this direction, but their
focus remains on basic social navigation or static collaboration
tasks, leaving significant room for improvement. Finally, most
existing platforms specialize in either physical modeling or
photorealistic simulation but fail to integrate these strengths
into a unified framework, creating a critical gap in tools
that can comprehensively address the needs of embodied
intelligence research.

To address these limitations, we propose a novel virtual-
physical integration platform that combines the strengths
of high-fidelity physics, dynamic scene modeling, and real-
time human-robot collaboration. By introducing stochastic
pedestrian behavior modeling—including adjustable avoid-
ance radii, randomized spawning points, and variable motion
patterns—our platform supports dynamic and unpredictable
environments, enhancing the robustness and generalization of
robot algorithms. Additionally, a state-of-the-art optical mo-
tion capture system provides sub-millimeter precision data for
sim2real transfer, ensuring seamless deployment of simulation-
trained models to real-world systems. Real-time human-in-the-
loop (HITL) interactions[38], including gesture commands,
natural language dialogue, and shared workspace collabora-
tion, further enable realistic HRC experiments. Finally, the
integration of annotated synthetic data with real-world mo-
tion capture allows simultaneous development and validation
across virtual and physical domains, bridging a long-standing
gap in embodied AI research.

By addressing the critical challenges of dynamic scene
modeling, sim2real transfer, and human-robot collaboration,
our proposed platform offers a comprehensive solution for

advancing embodied intelligence. Its ability to simulate com-
plex, real-world environments and facilitate seamless robot
deployment positions it as a transformative tool for future
research in navigation, manipulation, and collaboration. A
detailed comparison of existing simulation platforms is de-
lineated in Table I.

IV. SYSTEM FRAMEWORK

Fig. 2. Virtual-Real Fusion Module

In this section, we describe the key components of our
Dynamic Virtual-Real Simulation Platform (DVS), which in-
tegrates virtual-real fusion and dynamic scene generation to
support advanced robotic research. These two capabilities are
designed to address the limitations of existing simulation plat-
forms, enabling more effective training and evaluation of al-
gorithms in real-world conditions. By combining high-fidelity
virtual simulation with real-time interactions and dynamic
scene modeling, DVS provides a comprehensive environment
for testing mobile robots.

A. Virtual-Real Fusion for Seamless Interaction

Virtual-real fusion is a core feature of DVS, enabling precise
bidirectional synchronization between the virtual and physical
environments. This synchronization is critical for ensuring that
algorithms trained in the virtual world can be directly applied
to physical robots, thus bridging the sim-to-real gap.

The virtual-real fusion module consists of two primary
components: object pose alignment and robot state synchro-
nization. These components work together to ensure that both



the objects and the robots in the simulation environment align
accurately with their real-world counterparts.

1) Object Pose Synchronization: Object pose synchroniza-
tion is a critical feature for bridging the gap between virtual
and real environments, enabling accurate interactions between
robots and their surroundings in both domains. In DVS, we
achieve precise synchronization using a 12-camera motion
capture system, which provides real-time tracking with 0.1 mm
positional accuracy and 0.1° rotational precision. This allows
for high-fidelity pose alignment, essential for ensuring that
physical objects, such as robot end-effectors, align accurately
with their virtual counterparts in simulation.

The synchronization process begins with extrinsic cali-
bration of the motion capture system. By calibrating the
system’s extrinsic parameters, we can establish a unified world
coordinate system that aligns the virtual and real spaces. This
calibration is achieved through the following transformation:

Tvirtual = R · Treal + t (1)

Where:
• R is the rotation matrix derived from the spatial cali-

bration process, defining how the real-world orientation
maps to the virtual space.

• Treal is the translation vector representing the position of
the real-world object.

• t is the translation vector that compensates for any
misalignment, ensuring that both spaces share a common
origin.

Through this method, the physical object trajectories, such
as those of a robot’s end-effector, are directly mapped into
the virtual environment. This enables precise interaction with
virtual objects, improving the realism of simulations and
ensuring the accuracy of robotic tasks that require interaction
between the real and virtual worlds.

B. Dynamic Scene Generation

The dynamic scene generation module of DVS significantly
enhances the realism and complexity of training environ-
ments, creating scenarios that more accurately reflect real-
world conditions. This module incorporates dynamic pedes-
trian agents and mobile robotic proxies, both of which are
key to simulating the unpredictability and complexity of real-
world environments.

1) Dynamic Pedestrian Plug-in: DVS features a pedestrian
simulation plugin that introduces human-like agents into the
virtual environment. These agents are equipped with variable
motion accelerations and socially compliant avoidance behav-
iors, allowing them to navigate environments with high-density
crowd dynamics. The agents’ behaviors are modeled to mimic
real human interactions, including variable speeds, random
movement patterns, and avoidance of obstacles. This makes the
platform capable of replicating environments such as crowded
supermarkets, busy restaurants, or indoor spaces with dynamic
obstacles. The inclusion of pedestrians enhances the realism of
the simulation, as mobile robots must navigate and collaborate
within environments populated by humans.

This dynamic pedestrian behavior is essential for training
robots on navigation algorithms and human-robot interaction
tasks. The agents interact with robots in real-time, allowing
researchers to collect diverse data that can be used to refine
navigation strategies, path planning, and collaboration algo-
rithms. This is especially important for tasks requiring the
robot to adapt to unexpected changes in the environment or
human movements.

2) Multi-Robot Plug-in: In addition to pedestrian simula-
tion, DVS supports the integration of multiple mobile robotic
agents within the same environment. This capability allows
researchers to study multi-robot collaboration and competition
in dynamic settings. The simulation of multiple robots operat-
ing in close proximity enables the development of cooperative
algorithms for tasks such as resource sharing, coordinated
navigation, and joint manipulation.

The ability to simulate multi-robot environments in dy-
namic, cluttered spaces is critical for advancing robotics re-
search. By mimicking real-world challenges such as managing
crowded environments or dealing with unexpected obstacles,
DVS helps researchers develop more robust algorithms that
can handle complex tasks in unpredictable settings.

Together, dynamic pedestrians and multi-robot integration
ensure that DVS provides a training environment that closely
mirrors real-world operational conditions. These capabilities
are essential for developing robots that can navigate com-
plex spaces, collaborate with humans, and adapt to dynamic
changes in their environments.

V. APPLICATIONS OF DVS PLATFORM

Our platform supports the full workflow, from data gen-
eration to real-world validation. In the previous chapter, we
introduced two core modules of our system. This chapter
discusses the construction of a large-scale virtual-real fusion
dataset and explores the experimental data generation process,
along with its application in task training and testing.

A. Data Perception and Generation

Fig. 3. The interactive interface of the simulation platform: dynamic
pedestrian parameters are adjusted on the left, and perception data types are
selected on the right.

In robotics research, virtual environments provide clear task
representations, enabling agents to perform tasks in controlled
settings. Data generation is a core feature of simulation
platforms. As shown in Figure 3, our platform facilitates the
generation and processing of various data formats, including
RGB images, depth maps, 2D/3D bounding boxes, semantic
and instance segmentation, and trajectory data, all via a user-
friendly interface. These data types support foundational tasks



and enable complex research scenarios. For instance, Liao et
al. [18] propose generating activities based on environmental
context, Puig et al. [28] investigate human-robot social per-
ception and collaboration, and Li et al. [17] integrate language
models to assist robots in decision-making, thereby broadening
the scope of research in virtual environments.

To improve data quality and usability, we optimize the data
generation process by ensuring smooth camera trajectories and
precise depth alignment. Bezier curves are employed to plan
smooth camera motion, reducing abrupt changes at trajectory
corners, which enhances frame-to-frame feature matching and
point cloud reconstruction. Depth data is aligned with RGB
timestamps to ensure precise synchronization, which is crucial
for multi-sensor fusion and complex scene modeling. These
optimizations ensure a smooth transition from static to dy-
namic environments, providing robust support for advancing
robotics research, even as task complexity increases.

B. Robotic Tasks Learning

Fig. 4. The robotic arm is interrupted while executing Prompt A and is
requested to execute Prompt B. The first row shows the robotic arm in the
virtual platform, and the second row shows the real robotic arm.

1) virtual-real intervention Grasping: A key weakness of
learned policies in robotic manipulation is that their success
rate in task execution is low when deployed in practice. In
heterogeneous deployments using only pretrained weights,
the success rate of robots performing tasks across different
models tends to approach zero. Even when data collection for
specific tasks is done using the robot being deployed and fine-
tuned, the success rate of task execution is still only around
90%, making it difficult to apply in the industry. However,
due to the characteristics of our platform, which includes
virtual-real mapping and benchmark alignment between the
virtual environment and the real world, and the fact that the
robot has a ROS communication interface, we can supervise
and intervene in the robot’s tasks in the real world through
the platform to improve the success rate of task execution.
We set up experimental conditions based on the common
manipulation task of grasping. As shown in Figure 44, in order
to reflect the characteristics of our platform supervision and
intervention, we provide the gripper with wrong instructions
at the beginning of the experiment, and interrupt the task

and provide new tasks based on virtual scenes through the
platform when the gripper is performing the task. We utilized
a seven-degree-of-freedom Kinova Gen3 robotic arm to collect
nearly a hundred grasping data points on a planar surface. The
data was then fine-tuned on the pre-trained models released
by OpenVLA-7B[13] and RDT-1B[19], enabling our robotic
arm to achieve a high success rate in performing tasks in
specific scenarios. At the beginning of the experiment, we
provided the robotic arm with prompts to grasp an apple and a
banana, and midway through task execution, we interrupted the
task on the platform and assigned a new task.The experiment
demonstrated that our platform effectively intervened in the
robotic arm’s task execution. The experimental results are
shown in the tableII. Prompts: A: ”Pick up the apple”; B:
”Pick up the banana.”

TABLE II
TASK SUCCESS RATES BY MODULE AND PROMPT ORDER

Module Prompt Order Success Rate (%)

First Second First Task Second Task

OpenVLA-7B A B 0.0 100.0
B A 0.0 90.0

RDT-1B A B 0.0 80.0
B A 0.0 90.0

Gym

80

Office

Observed Prediction Ground Truth Collision

Fig. 5. Visualization of pedestrian trajectory prediction, where each color
represents a different pedestrian. The accuracy of the prediction is higher when
the predicted trajectory (short dashed line) closely aligns with the ground truth
(GT, solid line). In environments with dense static obstacles, such as indoors,
the predicted future trajectory may result in collisions (red rectangular box).

2) Dynamic Indoor Pedestrian Trajectory Prediction:
Pedestrian trajectory prediction aims to forecast future tra-
jectories based on observed trajectories, while considering
complex interactions and environmental layouts. It serves as
a crucial connection between the perception system and the
planning system.

Three trajectory prediction algorithms, i.e. STGAT [10],
Trajectron++ [30] and TUTR [33], are tested on our synthetic
indoor scenes (Gym, Office and Supermarket) as well as
the official public outdoor dataset (ETH [26]).We use ADE
(Average Displacement Error) and FDE (Final Displacement
Error) as evaluation metrics, where lower ADE and FDE
values indicate better performance. The experimental results
are depicted in Table III. Additionally, to analyze pedes-
trian movement patterns and collision avoidance strategies,
we selected two dense indoor scenes (Gym and Office) and
visualized the predicted trajectories in Fig. 5.



Overall, all three methods experience a significant perfor-
mance decrease when applied to indoor scenes compared to
the outdoor ETH scene. Specifically, the ADE for STGAT
decreases from 0.79 to 1.42 (79.7%) when generalizing from
the ETH scene to the Supermarket scene, while the FDE
for STGAT decreases from 1.48 to 2.88 (94.5%) in the
same scenario. We analyze this performance drop from three
perspectives. First, compared to outdoor scenes, narrow indoor
spaces are often filled with numerous static obstacles, which
can interfere with human trajectory decision-making and lead
to collisions. Second, indoor human interactions are more
frequent due to communication or obstacles caused by people
standing in the way, making predictions more challenging.
Third, indoor spaces are generally smaller than outdoor en-
vironments, with pedestrian trajectories being less spread out,
making predictions more sensitive to small positional changes.
If the model was trained on larger, more open outdoor spaces,
it may not have learned to adapt to the smaller, more dynamic
movements of indoor environments.

The results also underscore the importance of robust spatial-
temporal modeling in trajectory prediction tasks. TUTR’s
transformer-based architecture appears particularly well-suited
for capturing intricate interactions over time, leading to its su-
perior performance. Trajectron provides a balance of stability
and accuracy but lags behind in highly dynamic environments.
Conversely, STGAT’s graph-based approach, while effective in
simpler scenarios, struggles in complex environments, high-
lighting its limitations in handling high-dimensional spatial-
temporal variability. These findings offer valuable insights for
future research, emphasizing the need for models that can gen-
eralize effectively across diverse scenarios while maintaining
low computational overhead.

TABLE III
EXPERIMENTS ON PEDESTRIAN TRAJECTORY PREDICTION. GYM, OFFICE
AND SUPERMARKET ARE OUR SYNTHETIC INDOOR SCENES, WHILE ETH

[26] IS THE OFFICIAL PUBLIC OUTDOOR DATASET.

Scene Method ADE ↓ FDE ↓

Gym
STGAT 1.39 3.01

Trajectron++ 0.59 1.02
TUTR 0.70 1.19

Office
STGAT 1.38 2.75

Trajectron++ 0.89 1.60
TUTR 0.81 1.40

Supermarket
STGAT 1.42 2.88

Trajectron++ 0.96 1.82
TUTR 0.83 1.50

ETH
STGAT 0.79 1.48

Trajectron++ 0.52 0.97
TUTR 0.43 0.83

VI. CONCLUSION

We propose a dynamic virtual-Real simulation platform
that integrates configurable pedestrian behavior simulation,
large-scale indoor environments, optical motion capture, and
ROS-based bidirectional virtual-reality communication. The

platform introduces two major innovative modules for virtual-
reality integration, overcoming current limitations in robotic
simulation systems for dynamic scenarios and real-world
deployment. Experimental results show that DVS supports
navigation and human-robot interaction research, achieving
closed-loop performance in real-world missions. Future work
will focus on integrating haptic feedback, developing AI-
driven intervention strategies, and improving compatibility
with industrial robotic arms. This platform creates a new
paradigm for closed-loop virtual-reality interaction, advancing
human-robot collaboration and dynamic environment adapta-
tion.

REFERENCES

[1] Arash Ajoudani, Andrea Maria Zanchettin, Serena Ivaldi,
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Akyürek, Anima Anandkumar, et al. Pre-trained lan-
guage models for interactive decision-making. Advances
in Neural Information Processing Systems, 35:31199–
31212, 2022.

[18] Yuan-Hong Liao, Xavier Puig, Marko Boben, Antonio
Torralba, and Sanja Fidler. Synthesizing environment-
aware activities via activity sketches. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6291–6299, 2019.

[19] Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan,
Huayu Chen, Zhengyi Wang, Ke Xu, Hang Su, and Jun
Zhu. Rdt-1b: a diffusion foundation model for bimanual
manipulation. arXiv preprint arXiv:2410.07864, 2024.

[20] Zhihao Liu, Quan Liu, Wenjun Xu, Lihui Wang, and
Zude Zhou. Robot learning towards smart robotic man-
ufacturing: A review. Robotics and Computer-Integrated
Manufacturing, 77:102360, 2022.

[21] Matteo Luperto, Javier Monroy, Jennifer Renoux,
Francesca Lunardini, Nicola Basilico, Maria Bulgheroni,

Angelo Cangelosi, Matteo Cesari, Manuel Cid, Aladar
Ianes, et al. Integrating social assistive robots, iot, virtual
communities and smart objects to assist at-home indepen-
dently living elders: the movecare project. International
Journal of Social Robotics, 15(3):517–545, 2023.

[22] Eloise Matheson, Riccardo Minto, Emanuele GG
Zampieri, Maurizio Faccio, and Giulio Rosati. Human–
robot collaboration in manufacturing applications: A re-
view. Robotics, 8(4):100, 2019.

[23] Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu,
Nikita Rudin, David Hoeller, Jia Lin Yuan, Ritvik Singh,
Yunrong Guo, Hammad Mazhar, Ajay Mandlekar, Buck
Babich, Gavriel State, Marco Hutter, and Animesh Garg.
Orbit: A unified simulation framework for interactive
robot learning environments. IEEE Robotics and Au-
tomation Letters, 8(6):3740–3747, 2023. doi: 10.1109/
LRA.2023.3270034.

[24] Eduardo Mosqueira-Rey, Elena Hernández-Pereira,
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